數(shù)學初三下冊必背知識點梳理_初中輔導
數(shù)學初三下冊必背知識點梳理_初中輔導,知識是取之不盡,用之不竭的。只有限度地挖掘它,才能體會到學習的樂趣。任何一門學科的知識都需要大量的記憶和練習來鞏固。雖然辛苦,但也伴隨著快樂!下面是小編給大家整理的一些九年級數(shù)學知識點,希望對大家有所
好好動腦筋,復習要求“理解”:在理解的基礎(chǔ)上記憶的效果是最好的,不建議死記硬背。 多動筆:“好記性不如爛筆頭”。初中生學習方法?一定要多感官并用,對于那些重點、難點又不容易記住的內(nèi)容更是要多動筆。數(shù)學初三下冊必背知識點
形如y=k/x(k為常數(shù)且k≠0,x≠0,y≠0)的函數(shù),叫做反比例函數(shù)。
自變量x的取值局限是不即是0的一切實數(shù)。
反比例函數(shù)圖像性子:
反比例函數(shù)的圖像為雙曲線。
由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點對稱。
另外,從反比例函數(shù)的剖析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。
當K>0時,反比例函數(shù)圖像經(jīng)由一,三象限,是減函數(shù)(即y隨x的增大而減小)
當K<0時,反比例函數(shù)圖像經(jīng)由二,四象限,是增函數(shù)(即y隨x的增大而增大)
由于反比例函數(shù)的自變量和因變量都不能為0,以是圖像只能無限向坐標軸靠近,無法和坐標軸相交。
過反比例函數(shù)圖象上隨便一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。
對于雙曲線y=k/x,若在分母上加減隨便一個實數(shù)(即y=k/x(x±m(xù))m為常數(shù)),就相當于將雙曲線圖象向左或右平移一個單元。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)
數(shù)學初三下冊會考的知識點
知識點一、平面直角坐標系
1,平面直角坐標系
在平面內(nèi)畫兩條相互垂直且有公共原點的數(shù)軸,就組成了平面直角坐標系。
其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正偏向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正偏向;兩軸的交點O(即公共的原點)叫做直角坐標系的原點;確立了直角坐標系的平面,叫做坐標平面。
為了便于形貌坐標平面內(nèi)點的位置,把坐標平面被x軸和y軸支解而成的四個部門,劃分叫做第一象限、第二象限、第三象限、第四象限。
注重:x軸和y軸上的點,不屬于任何象限。
2、點的坐標的觀點
點的坐標用(a,b)示意,其順序是橫坐標在前,縱坐標在后,中央有“,”離開,橫、縱坐標的位置不能顛倒。平面內(nèi)點的坐標是有序?qū)崝?shù)對,那時,(a,b)和(b,a)是兩個差異點的坐標。
知識點二、差異位置的點的坐標的特征
1、各象限內(nèi)點的坐標的特征
點P(x,y)在第一象限
點P(x,y)在第二象限
點P(x,y)在第三象限
點P(x,y)在第四象限
2、坐標軸上的點的特征
點P(x,y)在x軸上,x為隨便實數(shù)
點P(x,y)在y軸上,y為隨便實數(shù)
點P(x,y)既在x軸上,又在y軸上x,y同時為零,即點P坐標為(0,0)
3、兩條坐標軸夾角中分線上點的坐標的特征
點P(x,y)在第一、三象限夾角中分線上x與y相等
點P(x,y)在第二、四象限夾角中分線上x與y互為相反數(shù)
4、和坐標軸平行的直線上點的坐標的特征
位于平行于x軸的直線上的各點的縱坐標相同。
位于平行于y軸的直線上的各點的橫坐標相同。
5、關(guān)于x軸、y軸或遠點對稱的點的坐標的特征
點P與點p’關(guān)于x軸對稱橫坐標相等,縱坐標互為相反數(shù)
點P與點p’關(guān)于y軸對稱縱坐標相等,橫坐標互為相反數(shù)
點P與點p’關(guān)于原點對稱橫、縱坐標均互為相反數(shù)
6、點到坐標軸及原點的距離
點P(x,y)到坐標軸及原點的距離:
(1)點P(x,y)到x軸的距離即是
(2)點P(x,y)到y(tǒng)軸的距離即是
(3)點P(x,y)到原點的距離即是
數(shù)學初三下冊知識點歸納
1、二次根式確立的條件:被開方數(shù)是一個非負數(shù)。
2、二次根式的實質(zhì):是一個非負數(shù)的算術(shù)平方根。因此√a≥0。
3、兩個公式:(√a)2=a(a≥0);√a2=∣a∣.
4、二次根式的乘除:√a×√b=√ab(a≥0,b≥0);√a÷√b=√a/b(a≥0,b>0).
5、最簡二次根式:⑴被開方數(shù)不含分母;⑵被開方數(shù)中不含能開的盡方的因數(shù)或因式。
6、二次根式的加減:先將二次根式化成最簡二次根式,再將被開方數(shù)相同的二次根式舉行合并。
7、行使公式:(a+b)(a-b)=a2-b2;(a±b)2=a2±2ab+b
第二十二章一元二次方程
1、界說:形如:ax2+bx+c=0(a≠0)的方程叫一元二次方程。
①是整式方程,②未知數(shù)的最高次數(shù)是二次,③只含有一個未知數(shù),④二次項系數(shù)不為零。
2、化為一元二次方程的一樣平常形式:按降冪排列,二次項系數(shù)通常為正,右端為零。
3、一元二次方程的根:代入使方程確立。
4、一元二次方程的解法:
①配方式:移項→二次項系數(shù)化為一→雙方同時加上一次項系數(shù)的一半→配方→開方→寫出方程的解。
②公式法:x=(-b±√b2-4ac)/2a,
③因式剖析法:右端為零,左端剖析為兩個因式的乘積。
5、一元二次方程的根的判別式①當△>0時,方程有兩個不相等的實數(shù)根
②當△=0時,方程有兩個相等的實數(shù)根,③當△<0時,方程沒有實數(shù)根。
注重:應用的條件條件是:a≠
6、一元二次方程根與系數(shù)的關(guān)系:x1+x2=-b/a,x1_x2=c/a.
,要帶著問題上課。在聽課時,還要把自已在預習中找到的重要問題和疑難問題帶到課堂上來,緊跟老師講課的思路,把這些問題逐個解決。具體要做到“五勤”:用耳朵聽老師講課,用眼睛看老師板書,用腦思考老師提出的帶啟發(fā)性的問題,用口回答老師的提問或向老師請教不懂的問題,用手記錄老師講課中那些課本中沒有的重點內(nèi)容。,注重:應用的條件條件是:a≠0,△≥
7、列方程解應用題:審題設(shè)元→列代數(shù)式、列方程→整理成一樣平常形式→解方程→磨練作答。
第二十三章旋轉(zhuǎn)
1、旋轉(zhuǎn)的三要素:旋轉(zhuǎn)中央,旋轉(zhuǎn)偏向,旋轉(zhuǎn)角。
2、旋轉(zhuǎn)的性子:①對應點到旋轉(zhuǎn)中央的距離相等,②對應點與旋轉(zhuǎn)中央所連線段的夾角即是旋轉(zhuǎn)角,③旋轉(zhuǎn)前、后的圖形全等。
要害:找好對應線段、對應角。
3、中央對稱:把一個圖形繞著某一點旋轉(zhuǎn)180°,若是它能夠與另一個圖形重合,那么這兩個圖形關(guān)于這個點對稱或中央對稱。
4、中央對稱的性子:①關(guān)于中央對稱的兩個圖形,對應點所連線段都經(jīng)由對稱中央,而且被對稱中央所中分。②關(guān)于中央對稱的兩個圖形是全等形。
5、中央對稱圖形:把一個圖形繞著某一個點旋轉(zhuǎn)180°,若是旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中央對稱圖形。
6、對稱點的坐標紀律:①關(guān)于x軸對稱:橫坐標穩(wěn)固,縱坐標互為相反數(shù),②關(guān)于y軸對稱:橫坐標互為相反數(shù),縱坐標穩(wěn)固,③關(guān)于原點對稱:橫坐標、縱坐標都互為相反數(shù)。
第二十四章圓
1、確定圓的條件:圓心→位置,半徑→巨細。
2、和圓有關(guān)的觀點:弦---直徑,弧—半圓、優(yōu)弧、劣弧,圓心角,圓周角,弦心距。
3、圓的對稱性:圓既是軸對稱圖形,又是中央對稱圖形。
4、垂徑定理:垂直于弦的直徑中分弦,而且中分弦所對的兩條弧。
推論:中分弦(不是直徑)的直徑垂直于弦,而且中分弦所對的兩條弧。
5、圓心角、弧、弦、弦心距之間的關(guān)系:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,弦的弦心距相等。
引申:在這四組量中,只要有一組量對應相等,其余各組量都相等。
6、圓周角定理:①圓周角即是同弧所對的圓心角的一半,
②在同圓或等圓中,同弧或等弧所對的圓周角相等,都即是這條弧所對的圓心角的一半;相等的圓周角所對的弧相等,
③半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑。
7、心里和外心:①心里是三角形內(nèi)角中分線的交點,它到三角形三邊的距離相等。
②外心是三角形三邊垂直中分線的交點,它到三角形三個極點的距離相等。
8、直線和圓的位置關(guān)系:相交→d
9、切線的判斷:“有點連圓心”→證垂直。“無點做垂線”→證d=r。
切線的性子:圓的切線垂直于經(jīng)由切點的半徑。
10、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,這一點和圓心的連線中分兩條切線的夾角。
11、圓內(nèi)接四邊形的性子:圓內(nèi)接四邊形的對角互補,每一個外角即是它的內(nèi)對角。
12、圓外切四邊形的性子:圓外切四邊形的對邊之和相等。
13、圓和圓的位置關(guān)系:外離→d>R+r.外切→d=R+r.相交→R-r
14、正多邊形和圓:半徑→外接圓的半徑,中央角→每一邊所對的圓心角,邊心距→中央到一邊的距離。
15、弧長和扇形面積:L=n∏R/18S扇形=n∏R2/36
16、圓錐的側(cè)面積和周全積:圓錐的.母線長=扇形的半徑,圓錐底面圓周長=扇形弧長,圓錐的側(cè)面積=扇形面積,圓錐的周全積=扇形面積+底面圓面積。
第二十五章概率劈頭
1、三種事宜:隨機事宜、不能能事宜、一定事宜。
2、概率:P(A)=p.0≤P(A)≤
3、古典概率的求法:①枚舉法(把所有可能效果都示意出來),②列表法,③樹形圖。
4、用頻率估量概率:憑證一個隨機發(fā)生的事宜發(fā)生的頻率所逐漸穩(wěn)固到的常數(shù),可以估量這個事宜發(fā)生的概率。
第二十六章二次函數(shù)
1、界說:形如y=ax2+bx+c(a≠0,a、b、c是常數(shù))的函數(shù)叫二次函數(shù)。
2、二次函數(shù)的分類:①y=ax2:極點坐標:原點;對稱軸:y軸;
②y=ax2+c:極點坐標:(0、c);對稱軸:y軸;
③y=a(x-h)2:極點坐標:(h、0);對稱軸:直線x=h;
④y=a(x-h)2+k:極點坐標:(h、k);對稱軸:直線x=h;
⑤y=ax2+bx+c:極點坐標:(-b/ 2a , 4ac -b2/ 4a );對稱軸:直線x=-b/ 2a
3、a、b、c符號的判斷:a:啟齒偏向向上→a>0;啟齒偏向向下→a<0。
b:與a左同右異,對稱軸在y軸左側(cè),a、b同號;對稱軸在y軸右側(cè),a、b異號。
C:交與y軸正半軸,c>0;交與y軸負半軸,c<0
b2 -4ac?。号cx軸交點的個數(shù),△>0→兩個交點,△<0→無交點,△=0→一個交點。
3、平移紀律:“正左負右”“正上負下”。
條件:配方成y=a(x-h)2+k的形式。
4、待定系數(shù)法確定函數(shù)關(guān)系式:①極點在原點選y=ax2;
②極點在y軸選y=ax2+c;
③通過坐標原點選y=ax2+bx;
④知道極點在x軸上選y=a(x-h)2;
⑤知道極點坐標選y=a(x-h)2+k;
⑥知道三點的坐標選y=ax2+bx+c。
5、其他應用:求與x軸的交點→解一元二次方程;與y軸交點為(0、c)。
6、對稱紀律:
①兩拋物線關(guān)于x軸對稱:a、b、c都變?yōu)槠湎喾磾?shù)。
②兩拋物線關(guān)于y軸對稱:a、c穩(wěn)固,b變?yōu)槠湎喾磾?shù)。
7、現(xiàn)實問題:利潤=銷售額-總進價-其他用度,利潤=(售價-進價)_銷售量-其他用度。
數(shù)學初三下冊必背知識點梳理相關(guān):
成都中考補習班咨詢:15283982349
學習從來無捷徑。每一門科目都有自己的學習方法,但其實都是萬變不離其中的,數(shù)學其實和語文英語一樣,也是要記、要背、要練的。下面是小編給大家整理的一些初三數(shù)學知識點,希望對大家有所幫助。初三數(shù)學下冊的知識