高三數(shù)學(xué)機(jī)構(gòu)輔導(dǎo)_2020高考數(shù)學(xué)知識(shí)點(diǎn)大全
數(shù)列主要考察數(shù)列的定義,等差數(shù)列、等比數(shù)列的性質(zhì),數(shù)列的通項(xiàng)公式及數(shù)列的求和。
解三角形在解答題中主要考查正、余弦定理在解三角形中的應(yīng)用。
備戰(zhàn)考,高考數(shù)學(xué)考什么?那么,下面由小編為整理有關(guān)考數(shù)學(xué)知識(shí)點(diǎn)的資料,感興趣的同伙們來看一下吧!
舉行聚集的交、并、補(bǔ)運(yùn)算時(shí),不要忘了全集和空集的特殊情形,不要遺忘了借助數(shù)軸和文氏圖舉行求解.
在應(yīng)用條件時(shí),易A忽略是空集的情形
你會(huì)用補(bǔ)集的頭腦解決有關(guān)問題嗎?
簡(jiǎn)樸命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?若何判斷充實(shí)與需要條件?
你知道“否命題”與“命題的否認(rèn)形式”的區(qū)別.
求解與函數(shù)有關(guān)的問題易忽略界說域優(yōu)先的原則.
判斷函數(shù)奇偶性時(shí),易忽略磨練函數(shù)界說域是否關(guān)于原點(diǎn)對(duì)稱.
求一個(gè)函數(shù)的剖析式和一個(gè)函數(shù)的反函數(shù)時(shí),易忽略標(biāo)注該函數(shù)的界說域.
原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個(gè)函數(shù)存在反函數(shù),此函數(shù)紛歧定單調(diào).例如:.
你熟練地掌握了函數(shù)單調(diào)性的證實(shí)方式嗎?界說法(取值,作差,判正負(fù))和導(dǎo)數(shù)法
求函數(shù)單調(diào)性時(shí),易錯(cuò)誤地在多個(gè)單調(diào)區(qū)間之間添加符號(hào)“∪”和“或”;單調(diào)區(qū)間不能用聚集或不等式示意.
求函數(shù)的值域必須先求函數(shù)的界說域。
若何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?①對(duì)照函數(shù)值的巨細(xì);②解抽象函數(shù)不等式;③求參數(shù)的局限(恒確立問題).這幾種基本應(yīng)用你掌握了嗎?
解對(duì)數(shù)函數(shù)問題時(shí),你注重到真數(shù)與底數(shù)的限制條件了嗎?(真數(shù)大于零,底數(shù)大于零且不即是字母底數(shù)還需討論
三個(gè)二次(哪三個(gè)二次?)的關(guān)系及應(yīng)用掌握了嗎?若何行使二次函數(shù)求最值?
用換元法解題時(shí)易忽略換元前后的等價(jià)性,易忽略參數(shù)的局限。
“實(shí)系數(shù)一元二次方程有實(shí)數(shù)解”轉(zhuǎn)化時(shí),你是否注重到:那時(shí),“方程有解”不能轉(zhuǎn)化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否思量到二次項(xiàng)系數(shù)可能為的零的情形?
行使均值不等式求最值時(shí),你是否注重到:“一正;二定;三等”.
絕對(duì)值不等式的解法及其幾何意義是什么?
解分式不等式應(yīng)注重什么問題?用“根軸法”解整式(分式)不等式的注重事項(xiàng)是什么?
解含參數(shù)不等式的通法是“界說域?yàn)闂l件,函數(shù)的單調(diào)性為基礎(chǔ),分類討論是要害”,注重解完之后要寫上:“綜上,原不等式的解集是……”.
(3)面面平行的性質(zhì):兩個(gè)平面平行,其中一個(gè)平面內(nèi)的任何一條直線必平行于另一個(gè)平面
(4)線面垂直的性質(zhì):平面外與已知平面的垂線垂直的直線平行于已知平面
,戴氏教育高三歷史培訓(xùn)學(xué)校面授1對(duì)1 師生面對(duì)面現(xiàn)場(chǎng)輔導(dǎo),定制學(xué)習(xí)方案、因材施教,全程貼心陪伴、答疑解惑, 注意力集中、學(xué)習(xí)效率高。,在求不等式的解集、界說域及值域時(shí),其效果一定要用聚集或區(qū)間示意;不能用不等式示意.
兩個(gè)不等式相乘時(shí),必須注重同向同正時(shí)才氣相乘,即同向同正可乘;同時(shí)要注重“同號(hào)可倒”即a>b>0,a<0.
軌跡,包羅兩個(gè)方面的問題:凡在軌跡上的點(diǎn)都相符給定的條件,這叫做軌跡的純粹性(也叫做需要性);凡不在軌跡上的點(diǎn)都不相符給定的條件,也就是相符給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完整性(也叫做充實(shí)性).
【軌跡方程】就是與幾何軌跡對(duì)應(yīng)的代數(shù)形貌。
一、求動(dòng)點(diǎn)的軌跡方程的基本步驟
⒈確立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);
?、矊懗鳇c(diǎn)M的聚集;
⒊列出方程=0;
?、椿?jiǎn)方程為最簡(jiǎn)形式;
?、的ゾ殹?/p>
二、求動(dòng)點(diǎn)的軌跡方程的常用方式:求軌跡方程的方式有多種,常用的有直譯法、界說法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。
?、敝弊g法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方式通常叫做直譯法。
⒉界說法:若是能夠確定動(dòng)點(diǎn)的軌跡知足某種已知曲線的界說,則可行使曲線的界說寫出方程,這種求軌跡方程的方式叫做界說法。
?、诚嚓P(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y示意相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后裔入點(diǎn)P的坐標(biāo)(x0,y0)所知足的曲線方程,整理化簡(jiǎn)捷獲得動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方式叫做相關(guān)點(diǎn)法。
⒋參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,獲得方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方式叫做參數(shù)法。
?、到卉壏ǎ簩蓜?dòng)曲線方程中的參數(shù)消去,獲得不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方式叫做交軌法。
直譯法:求動(dòng)點(diǎn)軌跡方程的一樣平常步驟
?、俳ㄏ怠_立適當(dāng)?shù)淖鴺?biāo)系;
②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);
③列式——列出動(dòng)點(diǎn)p所知足的關(guān)系式;
?、艽鷵Q——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn);
⑤證實(shí)——證實(shí)所求方程即為相符條件的動(dòng)點(diǎn)軌跡方程。
考數(shù)學(xué)知識(shí)點(diǎn)大全相關(guān)文章:
成都高中文化課指點(diǎn)機(jī)構(gòu)電話:15283982349,1、讓孩子的知識(shí)面廣一些 學(xué)校就是教孩子做人,讓孩子改變命運(yùn)的一個(gè)地方,但是學(xué)習(xí)的知識(shí)不是完全的,還有很多孩子在學(xué)習(xí)學(xué)不到,然而補(bǔ)習(xí)班就相當(dāng)于這樣一個(gè)地方,找輔導(dǎo)班還能讓孩子學(xué)習(xí)上他們?cè)趯W(xué)校學(xué)不到的一些東西,能把他們?cè)谏险n時(shí)候?qū)W不到的東西都要學(xué)會(huì)把這些知識(shí)都弄懂,還可以讓孩子進(jìn)行理解,找到自己的不足,能找到適合自己的學(xué)習(xí)方法,分享一家