高二數(shù)學補課有用嗎_數(shù)學第一輪溫習知識點歸納綜合
⑶數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求和、數(shù)列的應(yīng)用
⑷三角函數(shù):有關(guān)概念、同角關(guān)系與誘導公式、和、差、倍、半公式、求值、化簡、證明、三角函數(shù)的圖象與性質(zhì)、三角函數(shù)的應(yīng)用
歷史使人明智,詩歌使人聰慧,數(shù)學使人正確,哲學使人深刻,倫理使人莊重,邏輯使人善辯。無論才氣知識何等卓著,若是缺乏熱情,則無異紙上畫餅果腹,無補于事。以下是小編給人人整理的數(shù)學第一輪溫習知識點歸納綜合,希望能輔助到你!
一個推導
行使錯位相減法推導等比數(shù)列的前n項和:Sn=aa+a…+an-
同乘q得:qSn=a+aa…+an,
兩式相減得(q)Sn=aan,∴Sn=(q≠.
兩個提防
(由an+qan,q≠0并不能立刻斷言{an}為等比數(shù)列,還要驗證a0.
(在運用等比數(shù)列的前n項和公式時,必須注重對q=q≠類討論,防止因忽略q=一特殊情形導致解題失誤.
三種方式
等比數(shù)列的判斷方式有:
(界說法:若an+an=q(q為非零常數(shù))或an/an-q(q為非零常數(shù)且n≥n∈N_),則{an}是等比數(shù)列.
(中項公式法:在數(shù)列{an}中,an≠0且a=an·an+n∈N_),則數(shù)列{an}是等比數(shù)列.
(通項公式法:若數(shù)列通項公式可寫成an=c·qn(c,q均是不為0的常數(shù),n∈N_),則{an}是等比數(shù)列.
注:前兩種方式也可用來證實一個數(shù)列為等比數(shù)列.
有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的歷程中,大量的、頻頻遇到的,而且是以林林總總的問題(包羅論證、盤算角、與距離等)中不能缺少的內(nèi)容,因此在主體幾何的總溫習中,首先應(yīng)從解決“平行與垂直”的有關(guān)問題著手,通過較為基本問題,熟悉正義、定理的內(nèi)容和功效,通過對問題的剖析與歸納綜合,掌握立體幾何中解決問題的紀律--充實行使線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的頭腦,以提高邏輯頭腦能力和空間想象能力。
判斷兩個平面平行的方式:
(憑證界說--證實兩平面沒有公共點;
(判斷定理--證實一個平面內(nèi)的兩條相交直線都平行于另一個平面;
(證實兩平面同垂直于一條直線。
兩個平面平行的主要性子:
第二、平面向量和三角函數(shù)。
重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來解三角形。難度比較小。
,首先,我總是把書的概念弄得很熟,而且充分理解。比如,高一主要是函數(shù),函數(shù)是基礎(chǔ)。函數(shù)概念,奇偶性,初等函數(shù)等。 第二,書上的例題我很重視,總是研究。例題都是出示了基本的應(yīng)用方法和解題思維。主要看思維和方法,若有條件可以跟個輔導班去學,拓展自身的學習思維,我就是這么過來的,可以參考下 第三,做習題。數(shù)學習題的練習是不可少的。但是也不要啥題都做,會做很多無用功。做書上的習題,高考題型等,一般都出題很規(guī)范。從易到難。 第四,要學會獨立思考。不要事事去問別人。不要總看答案會形成依賴。多思考,有自己的思考體系很重要。也會鍛煉大腦。 第五那里不會練那里。,(由界說知:“兩平行平面沒有公共點”;
(由界說推得:“兩個平面平行,其中一個平面內(nèi)的直線必平行于另一個平面”;
(兩個平面平行的性子定理:“若是兩個平行平面同時和第三個平面相交,那么它們的交線平行”;
(一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面;
(夾在兩個平行平面間的平行線段相等;
(經(jīng)由平面外一點只有一個平面和已知平面平行。
直線的傾斜角
界說:x軸正向與直線向上偏向之間所成的角叫直線的傾斜角。稀奇地,當直線與x軸平行或重適時,我們劃定它的傾斜角為0度。因此,傾斜角的取值局限是0°≤α<
直線的斜率
①界說:傾斜角不是的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k示意。即。斜率反映直線與軸的傾斜水平。
②過兩點的直線的斜率公式:
注重下面四點:
(那時,公式右邊無意義,直線的斜率不存在,傾斜角為;
(k與PP順序無關(guān);
(以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(求直線的傾斜角可由直線上兩點的坐標先求斜率獲得。
直線方程
點斜式:
直線斜率k,且過點
注重:當直線的斜率為0°時,k=0,直線的方程是y=y當直線的斜率為時,直線的斜率不存在,它的方程不能用點斜式示意.但因l上每一點的橫坐標都即是x以是它的方程是x=x