哪里高三數(shù)學(xué)輔導(dǎo)班好_數(shù)學(xué)主要知識(shí)點(diǎn)整理
第二、平面向量和三角函數(shù)。
重點(diǎn)考察三個(gè)方面:一個(gè)是劃減與求值,第一,重點(diǎn)掌握公式,重點(diǎn)掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來解三角形。難度比較小。
瞻仰天空時(shí),什么都比你高,你會(huì)自卑;俯視大地時(shí),什么都比你低,你會(huì)自負(fù);只有放寬視野,把天空和大地一覽無余,才氣在蒼穹泛土之間找到你真正的位置。這里給人人整理了一些有關(guān)數(shù)學(xué)主要知識(shí)點(diǎn)整理,希望對人人有所輔助.
一、求動(dòng)點(diǎn)的軌跡方程的基本步驟
⒈確立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);
⒉寫出點(diǎn)M的聚集;
⒊列出方程=0;
⒋化簡方程為最簡形式;
⒌磨練。
二、求動(dòng)點(diǎn)的軌跡方程的常用方式:求軌跡方程的方式有多種,常用的有直譯法、界說法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。
⒈直譯法:直接將條件翻譯成等式,整理化簡后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方式通常叫做直譯法。
⒉界說法:若是能夠確定動(dòng)點(diǎn)的軌跡知足某種已知曲線的界說,則可行使曲線的界說寫出方程,這種求軌跡方程的方式叫做界說法。
⒊相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y示意相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后裔入點(diǎn)P的坐標(biāo)(x0,y0)所知足的曲線方程,整理化簡捷獲得動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方式叫做相關(guān)點(diǎn)法。
⒋參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,獲得方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方式叫做參數(shù)法。
⒌交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,獲得不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方式叫做交軌法。
直譯法:求動(dòng)點(diǎn)軌跡方程的一樣平常步驟
①建系——確立適當(dāng)?shù)淖鴺?biāo)系;
②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);
③列式——列出動(dòng)點(diǎn)p所知足的關(guān)系式;
④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;
⑤證實(shí)——證實(shí)所求方程即為相符條件的動(dòng)點(diǎn)軌跡方程。
第一、高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。
主要是考函數(shù)和導(dǎo)數(shù),這是我們整個(gè)高中階段里最焦點(diǎn)的板塊,在這個(gè)板塊里,重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性子,包羅函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些漫衍問題,然則這個(gè)漫衍重點(diǎn)還包羅兩個(gè)剖析就是二次方程的漫衍的問題,這是第一個(gè)板塊。
第二、平面向量和三角函數(shù)。
重點(diǎn)考察三個(gè)方面:一個(gè)是劃減與求值,第一,重點(diǎn)掌握公式,重點(diǎn)掌握五組基本公式。第二,是三角函數(shù)的圖像和性子,這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性子,第三,正弦定理和余弦定理來解三角形。難度對照小。
第三、數(shù)列。
數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。
第四、空間向量和立體幾何,在內(nèi)里重點(diǎn)考察兩個(gè)方面:一個(gè)是證實(shí);一個(gè)是盤算。
第五、概率和統(tǒng)計(jì)。
這一板塊主要是屬于數(shù)學(xué)應(yīng)用問題的局限,固然應(yīng)該掌握下面幾個(gè)方面,第一……等可能的概率,第二………事宜,第三是自力事宜,另有自力重復(fù)事宜發(fā)生的概率。
第六、剖析幾何。
這是我們對照頭疼的問題,是整個(gè)試卷里難度對照大,盤算量的題,固然這一類題,我總結(jié)下面五類??嫉念}型,包羅:
第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容??忌鷳?yīng)該掌握它的通法;
第二類我們所講的動(dòng)點(diǎn)問題;
第三類是弦長問題;
第四類是對稱問題,這也是高考已經(jīng)考過的一點(diǎn);
第五類重點(diǎn)問題,這類題時(shí)往往以為有思緒,然則沒有謎底,
固然這里我相等的是,這道題只管盤算量很大,然則造成盤算量大的緣故原由,往往有這個(gè)緣故原由,我們所選方式不是很適當(dāng),因此,在這一章里我們要掌握對照好的算法,來提高我們做題的準(zhǔn)確度,這是我們所講的第六大板塊。
第七、押軸題。
考生在備考溫習(xí)時(shí),應(yīng)該重點(diǎn)不等式盤算的方式,雖然說難度對照大,我建議考生,接納分部得分整個(gè)試卷不要留空缺。這是高考所考的七大板塊焦點(diǎn)的考點(diǎn)。
考點(diǎn)一:聚集與淺易邏輯
聚集部門一樣平常以選擇題泛起,屬容易題。重點(diǎn)考察聚集間關(guān)系的明白和熟悉。近年的試題增強(qiáng)了對聚集盤算化簡能力的考察,并向無限集生長,考察抽象頭腦能力。在解決這些問題時(shí),要注重行使幾何的直觀性,并注重聚集示意方式的轉(zhuǎn)換與化簡。淺易邏輯考察有兩種形式:一是在選擇題和填空題中直接考察命題及其關(guān)系、邏輯聯(lián)絡(luò)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛?、全稱命題和特稱命題的否認(rèn)等,二是在解答題中深條理考察常用邏輯用語表達(dá)數(shù)學(xué)解題歷程和邏輯推理。
考點(diǎn)二:函數(shù)與導(dǎo)數(shù)
函數(shù)是高考的重點(diǎn)內(nèi)容,以選擇題和填空題的為載體針對性考察函數(shù)的界說域與值域、函數(shù)的性子、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對數(shù)、冪函數(shù))的應(yīng)用等,分值約為,解答題與導(dǎo)數(shù)交匯在一起考察函數(shù)的性子。導(dǎo)數(shù)部門一方面考察導(dǎo)數(shù)的運(yùn)算與導(dǎo)數(shù)的幾何意義,另一方面考察導(dǎo)數(shù)的簡樸應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式泛起,屬于容易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式泛起,如一些不等式恒確立問題、參數(shù)的取值局限問題、方程根的個(gè)數(shù)問題、不等式的證實(shí)等問題。
考點(diǎn)三:三角函數(shù)與平面向量
一樣平常是小題,綜合解答題。小題一道考察平面向量有關(guān)看法及運(yùn)算等,另一道對三角知識(shí)點(diǎn)的彌補(bǔ)。大題中若是沒有涉及正弦定理、余弦定理的應(yīng)用,可能就是一道息爭答題相互彌補(bǔ)的三角函數(shù)的圖像、性子或三角恒等變換的問題,也可能是考察平面向量為主的試題,要注重?cái)?shù)形連系頭腦在解題中的應(yīng)用。向量重點(diǎn)考察平面向量數(shù)目積的看法及應(yīng)用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等連系,解決角度、垂直、共線等問題是“新熱門”題型.
考點(diǎn)四:數(shù)列與不等式
不等式主要考察一元二次不等式的解法、一元二次不等式組和簡樸線性設(shè)計(jì)問題、基本不等式的應(yīng)用等,通常會(huì)在小題中設(shè)置題。對不等式的工具性穿插在數(shù)列、剖析幾何、函數(shù)導(dǎo)數(shù)等解答題中舉行考察.在選擇、填空題查等差或等比數(shù)列的看法、性子、通項(xiàng)公式、求和公式等的天真應(yīng)用,一道解答題大多凸顯以數(shù)列知識(shí)為工具,綜合運(yùn)用函數(shù)、方程、不等式等解決問題的能力,它們都屬于中、高等問題.
考點(diǎn)五:立體幾何與空間向量
一是考察空間幾何體的結(jié)構(gòu)特征、直觀圖與三視圖;二是考察空間點(diǎn)、線、面之間的位置關(guān)系;三是考察行使空間向量解決立體幾何問題:行使空間向量證實(shí)線面平行與垂直、求空間角等(文科不要求).在高考試卷中,一樣平常有客觀題和一個(gè)解答題,多為中檔題。
考點(diǎn)六:剖析幾何
一樣平常有客觀題息爭答題,其中客觀題主要考察直線斜率、直線方程、圓的方程、直線與圓的位置關(guān)系、圓錐曲線的界說應(yīng)用、尺度方程的求解、離心率的盤算等,解答題則主要考察直線與橢圓、拋物線等的位置關(guān)系問題,經(jīng)常與平面向量、函數(shù)與不等式交匯,考察一些存在性問題、證實(shí)問題、定點(diǎn)與定值、最值與局限問題等。
考點(diǎn)七:算法復(fù)數(shù)推理與證實(shí)
高考對算法的考察以選擇題或填空題的形式泛起,或給解答題披層“外衣”.考察的熱門是流程圖的識(shí)別與算法語言的閱讀明白.算法與數(shù)列知識(shí)的網(wǎng)絡(luò)交匯命題是考察的主流.復(fù)數(shù)考察的重點(diǎn)是復(fù)數(shù)的有關(guān)看法、復(fù)數(shù)的代數(shù)形式、運(yùn)算及運(yùn)算的幾何意義,一樣平常是選擇題、填空題,難度不大.推理證實(shí)部門命題的偏向主要會(huì)在函數(shù)、三角、數(shù)列、立體幾何、剖析幾何等方面,單獨(dú)出題的可能性較小。對于理科,數(shù)學(xué)歸納法可能作為解答題的一小問.
一、充實(shí)條件和需要條件
當(dāng)命題“若A則B”為真時(shí),A稱為B的充實(shí)條件,B稱為A的需要條件。
二、充實(shí)條件、需要條件的常用判斷法
⒉寫出點(diǎn)M的集合;
⒊列出方程=0;
,高三地理學(xué)習(xí)學(xué)校認(rèn)真面對每一次考試??荚嚦耸菣z驗(yàn)?zāi)銓W(xué)習(xí)效果的方式,同時(shí)也是你積累經(jīng)驗(yàn)的過程,比如:①學(xué)會(huì)如何分配和把控時(shí)間;②掌握作答中各種細(xì)節(jié)的處理技巧;③磨練考試心態(tài);④幫助自己認(rèn)識(shí)掌握的不足之處,復(fù)習(xí)提升。,界說法:判斷B是A的條件,現(xiàn)實(shí)上就是判斷B=>A或者A=>B是否確立,只要把問題中所給的條件按邏輯關(guān)系畫出箭頭示意圖,再行使界說判斷即可
轉(zhuǎn)換法:當(dāng)所給命題的充要條件不易判斷時(shí),可對命題舉行等價(jià)裝換,例如改用其逆否命題舉行判斷。
聚集法
在命題的條件和結(jié)論間的關(guān)系判斷有難題時(shí),可從聚集的角度思量,記條件p、q對應(yīng)的聚集劃分為A、B,則:
若A?B,則p是q的充實(shí)條件。
若A?B,則p是q的需要條件。
若A=B,則p是q的充要條件。
若A?B,且B?A,則p是q的既不充實(shí)也不需要條件。
三、知識(shí)擴(kuò)展
四種命題反映出命題之間的內(nèi)在聯(lián)系,要注重連系現(xiàn)實(shí)問題,明白其關(guān)系(尤其是兩種等價(jià)關(guān)系)的發(fā)生歷程,關(guān)于逆命題、否命題與逆否命題,也可以敘述為:
(交流命題的條件和結(jié)論,所得的新命題就是原來命題的逆命題;
(同時(shí)否認(rèn)數(shù)題的條件和結(jié)論,所得的新命題就是原來的否命題;
(交流命題的條件和結(jié)論,而且同時(shí)否認(rèn),所得的新命題就是原命題的逆否命題。
由于“充實(shí)條件與需要條件”是四種命題的關(guān)系的深化,他們之間存在這親熱的聯(lián)系,故在判斷命題的條件的充要性時(shí),可思量“正難則反”的原則,即在正面判斷較難時(shí),可轉(zhuǎn)化為應(yīng)用該命題的逆否命題舉行判斷。一個(gè)結(jié)論確立的充實(shí)條件可以不止一個(gè),需要條件也可以不止一個(gè)。
隨機(jī)抽樣
簡介
(抽簽法、隨機(jī)樣數(shù)表法)經(jīng)常用于總體個(gè)數(shù)較少時(shí),它的主要特征是從總體中逐個(gè)抽取;
優(yōu)點(diǎn):操作簡捷易行
瑕玷:總體過大不易執(zhí)行
方式
(抽簽法
一樣平常地,抽簽法就是把總體中的N個(gè)個(gè)體編號(hào),把號(hào)碼寫在號(hào)簽上,將號(hào)簽放在一個(gè)容器中,攪拌平均后,每次從中抽取一個(gè)號(hào)簽,延續(xù)抽取n次,就獲得一個(gè)容量為n的樣本。
(抽簽法簡樸易行,適用于總體中的個(gè)數(shù)不多時(shí)。當(dāng)總體中的個(gè)體數(shù)較多時(shí),將總體“攪拌平均”就對照難題,用抽簽法發(fā)生的樣本代表性差的可能性很大)
(隨機(jī)數(shù)法
隨機(jī)抽樣中,另一個(gè)經(jīng)常被接納的方式是隨機(jī)數(shù)法,即行使隨機(jī)數(shù)表、隨機(jī)數(shù)骰子或盤算機(jī)發(fā)生的隨機(jī)數(shù)舉行抽樣。
分層抽樣
簡介
分層抽樣主要特征分層按比例抽樣,主要使用于總體中的個(gè)體有顯著差異。配合點(diǎn):每個(gè)個(gè)體被抽到的概率都相等N/M。
界說
一樣平常地,在抽樣時(shí),將總體分成互不交織的層,然后根據(jù)一定的比例,從各層自力地抽取一定數(shù)目的個(gè)體,將各層取出的個(gè)體合在一起作為樣本,這種抽樣方式是一種分層抽樣。
整群抽樣
界說
什么是整群抽樣
整群抽樣又稱聚類抽樣。是將總體中各單元合并成若干個(gè)互不交織、互不重復(fù)的聚集,稱之為群;然后以群為抽樣單元抽取樣本的一種抽樣方式。
應(yīng)用整群抽樣時(shí),要求各群有較好的代表性,即群內(nèi)各單元的差異要大,群間差異要小。
優(yōu)瑕玷
整群抽樣的優(yōu)點(diǎn)是實(shí)行利便、節(jié)約經(jīng)費(fèi);
整群抽樣的瑕玷是往往由于差異群之間的差異較大,由此而引起的抽樣誤差往往大于簡樸隨機(jī)抽樣。
實(shí)行步驟
先將總體分為i個(gè)群,然后從i個(gè)群鐘隨即抽取若干個(gè)群,對這些群內(nèi)所有個(gè)體或單元均舉行觀察。抽樣歷程可分為以下幾個(gè)步驟:
一、確定分群的標(biāo)注
二、總體(N)分成若干個(gè)互不重疊的部門,每個(gè)部門為一群。
三、據(jù)各樣本量,確定應(yīng)該抽取的群數(shù)。
四、接納簡樸隨機(jī)抽樣或系統(tǒng)抽樣方式,從i群中抽取確定的群數(shù)。
例如,觀察中學(xué)生患近視眼的情形,抽某一個(gè)班做統(tǒng)計(jì);舉行產(chǎn)物磨練;每隔抽生產(chǎn)的所有產(chǎn)物舉行磨練等。
與分層抽樣的區(qū)別
整群抽樣與分層抽樣在形式上有相似之處,但現(xiàn)實(shí)上差異很大。
分層抽樣要求各層之間的差異很大,層內(nèi)個(gè)體或單元差異小,而整群抽樣要求群與群之間的差異對照小,群內(nèi)個(gè)體或單元差異大;
分層抽樣的樣本是從每個(gè)層內(nèi)抽取若干單元或個(gè)體組成,而整群抽樣則是要么整群抽取,要么整群不被抽取。
系統(tǒng)抽樣
界說
當(dāng)總體中的個(gè)體數(shù)較多時(shí),接納簡樸隨機(jī)抽樣顯得較為費(fèi)事。這時(shí),可將總體分成平衡的幾個(gè)部門,然后根據(jù)預(yù)先定出的規(guī)則,從每一部門抽取一個(gè)個(gè)體,獲得所需要的樣本,這種抽樣叫做系統(tǒng)抽樣。
步驟
一樣平常地,假設(shè)要從容量為N的總體中抽取容量為n的樣本,我們可以按下列步驟舉行系統(tǒng)抽樣:
(先將總體的N個(gè)個(gè)體編號(hào)。有時(shí)可直接行使個(gè)體自身所帶的號(hào)碼,如學(xué)號(hào)、準(zhǔn)考證號(hào)、門牌號(hào)等;
(確定分段距離k,對編號(hào)舉行分段。當(dāng)N/n(n是樣本容量)是整數(shù)時(shí),取k=N/n;
(在第一段用簡樸隨機(jī)抽樣確定第一個(gè)個(gè)體編號(hào)l(l≤k);
(根據(jù)一定的規(guī)則抽取樣本。通常是將l加上距離k獲得第個(gè)體編號(hào)(l+k),再加k獲得第個(gè)體編號(hào)(l+),依次舉行下去,直到獲取整個(gè)樣本。