文科數(shù)學(xué)輔導(dǎo)_的數(shù)學(xué)主要知識點總結(jié)
集合部分一般以選擇題出現(xiàn),屬容易題。重點考查集合間關(guān)系的理解和認識。近年的試題加強了對集合計算化簡能力的考查,并向無限集發(fā)展,考查抽象思維能力。在解決這些問題時,要注意利用幾何的直觀性,并注重集合表示方法的轉(zhuǎn)換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結(jié)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛?、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達數(shù)學(xué)解題過程和邏輯推理。
考點二:函數(shù)與導(dǎo)數(shù)
的數(shù)學(xué)主要知識點總結(jié)大全
瞻仰天空時,什么都比你高,你會自卑;俯視大地時,什么都比你低,你會自負;只有放寬視野,把天空和大地一覽無余,才氣在蒼穹泛土之間找到你真正的位置。無須自卑,不要自負,堅持自信。下面是小編給人人帶來的數(shù)學(xué)主要知識點總結(jié),以供人人參考!
不等式的界說
在客觀天下中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號毗鄰兩個數(shù)或代數(shù)式以示意它們之間的不等關(guān)系,含有這些不等號的式子,叫做不等式.
對照兩個實數(shù)的巨細
兩個實數(shù)的巨細是用實數(shù)的運算性子來界說的,
有a-b>0?;a-b=0?;a-b<0?.
另外,若b>0,則有>;=;<.
歸納綜合為:作差法,作商法,中央量法等.
不等式的性子
(對稱性:a>b?;
(轉(zhuǎn)達性:a>b,b>c?;
(可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;
(可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;
(可乘方:a>b>0?(n∈N,n≥;
(可開方:a>b>0?(n∈N,n≥.
溫習(xí)指導(dǎo)
“一個技巧”作差法變形的技巧:作差法中變形是要害,常舉行因式剖析或配方.
“一種方式”待定系數(shù)法:求代數(shù)式的局限時,先用已知的代數(shù)式示意目的式,再行使多項式相等的規(guī)則求出參數(shù),最后行使不等式的性子求出目的式的局限.
“兩條常用性子”
(倒數(shù)性子:①a>b,ab>0?<;②a<0
③a>b>0,0;④0
(若a>b>0,m>0,則
①真分數(shù)的性子:<;>(b-m>0);
②假分數(shù)的性子:>;<(b-m>0).
考點一:聚集與淺易邏輯
聚集部門一樣平常以選擇題泛起,屬容易題。重點考察聚集間關(guān)系的明白和熟悉。近年的試題增強了對聚集盤算化簡能力的考察,并向無限集生長,考察抽象頭腦能力。在解決這些問題時,要注重行使幾何的直觀性,并注重聚集示意方式的轉(zhuǎn)換與化簡。淺易邏輯考察有兩種形式:一是在選擇題和填空題中直接考察命題及其關(guān)系、邏輯聯(lián)絡(luò)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛?、全稱命題和特稱命題的否認等,二是在解答題中深條理考察常用邏輯用語表達數(shù)學(xué)解題歷程和邏輯推理。
考點二:函數(shù)與導(dǎo)數(shù)
數(shù)列題。1.證明一個數(shù)列是等差(等比)數(shù)列時,最后下結(jié)論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數(shù)列;2. 最后一問證明不等式成立時,如果一端是常數(shù),另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時,當(dāng)n=k+1時,一定利用上n=k時的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進行適當(dāng)?shù)姆趴s,這一點是有難度的。簡潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號,得到目標(biāo)式子,下結(jié)論時一定寫上綜上:由①②得證;3.證明不等式時,有時構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡單
立體幾何題1.證明線面位置關(guān)系,一般不需要去建系,更簡單;2.求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,最好要建系;3.注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。
,找到自己的不足 孩子的學(xué)習(xí)成績一直不是很好,其實原因有很多,有的就是他們采用的方式不正確,還有就是知識面不廣,讓孩子上了這個班,還會讓老師們按照學(xué)生的情況來進行分析,讓孩子知道自己哪里不會,老師能給他解決。所以說現(xiàn)在找輔導(dǎo)班,對孩子還有一定的好處,孩子要有一個清晰的頭腦,然后在去選擇報班,家長還要和孩子進行溝通,知道孩子天天都想什么.,函數(shù)是高考的重點內(nèi)容,以選擇題和填空題的為載體針對性考察函數(shù)的界說域與值域、函數(shù)的性子、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對數(shù)、冪函數(shù))的應(yīng)用等,分值約為,解答題與導(dǎo)數(shù)交匯在一起考察函數(shù)的性子。導(dǎo)數(shù)部門一方面考察導(dǎo)數(shù)的運算與導(dǎo)數(shù)的幾何意義,另一方面考察導(dǎo)數(shù)的簡樸應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式泛起,屬于容易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式泛起,如一些不等式恒確立問題、參數(shù)的取值局限問題、方程根的個數(shù)問題、不等式的證實等問題。
考點三:三角函數(shù)與平面向量
一樣平常是小題,綜合解答題。小題一道考察平面向量有關(guān)看法及運算等,另一道對三角知識點的彌補。大題中若是沒有涉及正弦定理、余弦定理的應(yīng)用,可能就是一道息爭答題相互彌補的三角函數(shù)的圖像、性子或三角恒等變換的問題,也可能是考察平面向量為主的試題,要注重數(shù)形連系頭腦在解題中的應(yīng)用。向量重點考察平面向量數(shù)目積的看法及應(yīng)用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等連系,解決角度、垂直、共線等問題是“新熱門”題型、
考點四:數(shù)列與不等式
不等式主要考察一元二次不等式的解法、一元二次不等式組和簡樸線性設(shè)計問題、基本不等式的應(yīng)用等,通常會在小題中設(shè)置題。對不等式的工具性穿插在數(shù)列、剖析幾何、函數(shù)導(dǎo)數(shù)等解答題中舉行考察、在選擇、填空題查等差或等比數(shù)列的看法、性子、通項公式、求和公式等的天真應(yīng)用,一道解答題大多凸顯以數(shù)列知識為工具,綜合運用函數(shù)、方程、不等式等解決問題的能力,它們都屬于中、高等問題、
考點五:立體幾何與空間向量
一是考察空間幾何體的結(jié)構(gòu)特征、直觀圖與三視圖;二是考察空間點、線、面之間的位置關(guān)系;三是考察行使空間向量解決立體幾何問題:行使空間向量證實線面平行與垂直、求空間角等(文科不要求)、在高考試卷中,一樣平常有客觀題和一個解答題,多為中檔題。
考點六:剖析幾何
一樣平常有客觀題息爭答題,其中客觀題主要考察直線斜率、直線方程、圓的方程、直線與圓的位置關(guān)系、圓錐曲線的界說應(yīng)用、尺度方程的求解、離心率的盤算等,解答題則主要考察直線與橢圓、拋物線等的位置關(guān)系問題,經(jīng)常與平面向量、函數(shù)與不等式交匯,考察一些存在性問題、證實問題、定點與定值、最值與局限問題等。
考點七:算法復(fù)數(shù)推理與證實
高考對算法的考察以選擇題或填空題的形式泛起,或給解答題披層“外衣”、考察的熱門是流程圖的識別與算法語言的閱讀明白、算法與數(shù)列知識的網(wǎng)絡(luò)交匯命題是考察的主流、復(fù)數(shù)考察的重點是復(fù)數(shù)的有關(guān)看法、復(fù)數(shù)的代數(shù)形式、運算及運算的幾何意義,一樣平常是選擇題、填空題,難度不大、推理證實部門命題的偏向主要會在函數(shù)、三角、數(shù)列、立體幾何、剖析幾何等方面,單獨出題的可能性較小。對于理科,數(shù)學(xué)歸納法可能作為解答題的一小問、
一、求動點的軌跡方程的基本步驟
⒈確立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動點M的坐標(biāo);
⒉寫出點M的聚集;
⒊列出方程=0;
⒋化簡方程為最簡形式;
⒌磨練。
二、求動點的軌跡方程的常用方式:求軌跡方程的方式有多種,常用的有直譯法、界說法、相關(guān)點法、參數(shù)法和交軌法等。
⒈直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方式通常叫做直譯法。
⒉界說法:若是能夠確定動點的軌跡知足某種已知曲線的界說,則可行使曲線的界說寫出方程,這種求軌跡方程的方式叫做界說法。
⒊相關(guān)點法:用動點Q的坐標(biāo)x,y示意相關(guān)點P的坐標(biāo)x0、y0,然后裔入點P的坐標(biāo)(x0,y0)所知足的曲線方程,整理化簡捷獲得動點Q軌跡方程,這種求軌跡方程的方式叫做相關(guān)點法。
⒋參數(shù)法:當(dāng)動點坐標(biāo)x、y之間的直接關(guān)系難以找到時,往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,獲得方程,即為動點的軌跡方程,這種求軌跡方程的方式叫做參數(shù)法。
⒌交軌法:將兩動曲線方程中的參數(shù)消去,獲得不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方式叫做交軌法。
_直譯法:求動點軌跡方程的一樣平常步驟
①建系——確立適當(dāng)?shù)淖鴺?biāo)系;
②設(shè)點——設(shè)軌跡上的任一點P(x,y);
③列式——列出動點p所知足的關(guān)系式;
④代換——依條件的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;
⑤證實——證實所求方程即為相符條件的動點軌跡方程。
數(shù)學(xué)主要知識點總結(jié)相關(guān)文章:成都高中文化課指點機構(gòu)電話:15283982349,戴氏教育高三歷史輔導(dǎo)機構(gòu)三層次 新教師:側(cè)重教學(xué)技能、職 業(yè)規(guī)劃,文化制度、溝通能 力四個維度; 青年教師:側(cè)重教學(xué)技能進 階、輔導(dǎo)能力晉級等維度;高級教師:側(cè)重教研學(xué)術(shù)能 力、管理能力等維度